Frederick Ernest Giesecke (also spelled Fredrich, Friederich, or Friederick Ernst Giesecke), educator, architect, and engineer, was born on January 28, 1869, in Latium, Washington County Texas, the son of Captain Julius and Wilhelmine (Gross) Giesecke. The family moved to New Braunfels in 1872. Ernst entered public school in 1876 and graduated in 1882. The next year he graduated from the German-English School in San Antonio at the age of fourteen. He entered the Agricultural and Mechanical College of Texas (now Texas A&M University) in the fall of 1883 and graduated first in his class. He also was the senior cadet officer in 1886. He immediately joined the faculty as an instructor in mechanical engineering. In 1888 mechanical drawing was separated from mechanical engineering, and, at the age of nineteen, he became department head. He did graduate work at Cornell University, the University of Illinois, and Massachusetts Institute of Technology (MIT). At MIT he found he was unable to get reliable information on water-heating systems, so in 1907 he took a year's leave to study at the Technical University of Berlin. On his return, his articles in Heating and Ventilation Magazine were the first authentic information on the subject published in the United States. (1)

Giesecke continued teaching at Texas A&M until 1912, when he was recruited by the University of Texas as head of the new Department of Architecture; he remained in this position until 1927 and then returned to Texas A&M as college architect and head of the architecture department. His experiments on rodding concrete pioneered the way for ready-mixed concrete, and his writings led to wide acceptance of reinforced concrete structures. He designed or supervised the construction of over twenty buildings on the A&M campus and wrote or contributed too many research bulletins, articles, and textbooks. The most prominent was Technical Drawing (1936, with Alva Mitchell and Henry Spencer), published and widely used for decades. Refer to attached summary of colleges and universities utilizing the book.

Giesecke was a charter member of the American Society of Engineering Education; a member of the American Society of Civil Engineers, the American Society of Mechanical Engineers, the American Institute of Architects, Tau Beta Pi, and Sigma Xi; national president of the American Society of Heating and Ventilating Engineers; and a fellow of the American Society for the Advancement of Science. He was awarded the American Society of Heating Ventilating Engineers fourth award of the F. Paul Anderson Gold Medal for outstanding contributions to the science of heating and ventilating. In 1891 Giesecke was married to Mulda Gruene of New Braunfels. They had four children. He died in 1953.

Dr. Frederick E. Giesecke, Class of 1886, recently donated to College Archives an original copy of the Texas A&M College Alumni Association Foundation Constitution of the Alumni Association of Texas
A&M College. This instrument, which is dated June 1, 1886, lists the following graduates as the organizers of this association, whose purpose is expressed as "an Association for the promotion of friendship, and the advancement of the popularity that our College has enjoyed so extensively signed:

- T. D. Rowell
- J. V. Carson
- A. L. Sherly
- M. D. Tilson
- I. A. Cottingham
- W. F. Woodward
- H. L. Wright
- W. Wipprecht
- D. Adriance

- J. N. Davis
- J. M. Carson
- E. W. Spann
- F. E. Giesecke
- C. L. Burghard
- J. M. Wesson
- J. B. McQueen
- C. C. McCulloch

This constitution was written by the above named, organizers in 1886, adopted in 1887, according to an appended note in the printed text, and was published in 1888 by the Pilot Book and Job Print, of Bryan, Texas. Dr. F. E. Giesecke, Class of “1886” and Assistant Professor of Mechanical Engineering from 1886 to 1888 and Head of the Drawing Department in 1888 and was elected the first Secretary of the Alumni Association.

He completed a S. B. degree in Architecture from MIT in 1904. Accepted employment at Texas A&M established Texas' first formal program in Architectural education at Texas A&M in 1905. In 1905 the change that made possible by development of the new curriculum in architectural engineering, which was developed and taught by Dr. Frederick E. Giesecke.

A wunderkind of the first magnitude, Giesecke, like Langford and many of the programs most successful students, was a product of the A&M Corps of Cadets. When founded in 1905, the architecture classes were held in Drawing Room No. 2 of the original Old Main Building.

In 1909, Ernest Langford's freshman year, the program was taught in Nagle Hall. In 1914, the Academic Building became home for the architecture program and remained so for the next 49 years.

Within two years, at age 19, he was appointed head of A&M's Department of Mechanical Drawing. He completed a Mechanical Engineering degree at A&M in 1890, and in the ensuing years, while still on the A&M faculty, he studied architectural drawing at Cornell University and architectural design at Massachusetts Institute of Technology - where he earned a S. B Degree in in architecture in 1904.

More than a century ago, in June 1906, the first graduates of Texas' first formal architectural education program received their degrees from what was then the Agricultural &d Mechanical College of Texas, known today as Texas A&M University. There were three successful graduates of them - James S. Dean, Max F. Mayer and J. Rodney Tabor - and all three went on to enjoy successful careers as Architects.

Of course, a proper review of the A&M architecture program's history should start at the beginning, September 1, 1905, four years before Ernest Langford enrolled for his freshman studies. That was the year seniors James S. Dean, Max F. Mayer and J. Rodney Tabor made a last-minute change to their degree plans.

That change was made possible by the new curriculum in architectural engineering, which was developed and taught by Frederick E. Giesecke. Giesecke served as head of the A&M architecture program until 1912, when he accepted a job at the University of Texas conducting research as the head of the Division of Engineering’s Bureau of Economic Geology and Technology.
Giesecke was a charter member of the American Society of Engineering Education; a member of the American Society of Civil Engineers, the American Society of Mechanical Engineers, the American Institute of Architects, Honorary Member of Tau Beta Pi and Sigma Xi; and a fellow of the American Society for the Advancement of Science and listed as a “WHO’s Who in Engineering”.

Dr. Giesecke joined ASHVE in 1917 so and went on to serve on multiple Technical Committees 1921-1953, Councils 1932-41 and Advisory Boards 1941-53, Chairman of the Executive Committee, and on many Research Technical Advisory Committees of ASHVE. He originally joined ASHVE, the predecessor society to ASHRAE becoming very active in ASHVE. He was Secretary of the Austin Chapter ASME 1917-19. There until 1920, he engaged primarily in research as head of the Division of Engineering’s Bureau of Economic Geology and Technology.

Later served as Director of Texas Engineering Experimental Station (TEES) from 1928 to 1939 during which time the Texas Legislature gave Texas A&M access to the permanent university fund that contained revenue earmarked for use by land-grant colleges. This allowed the university and Dr. Giesecke to plan, design and build numerous buildings on the main campus to the tune of $3,000,000 in capital improvements between 1929-1937.

Dr. Giesecke was obviously very intelligent and had a self-starting, good work ethic that required very little supervision that stood him in good company. He served on many committees and councils in ASHVE during his career after joining in 1917 thru 1953 as noted below:

<table>
<thead>
<tr>
<th>Year(s)</th>
<th>Committee/Task Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>1921-22</td>
<td>Sub-Committee on Pipe Sizes</td>
</tr>
<tr>
<td>1922-24</td>
<td>Committee on Steam & Return Main Sizes</td>
</tr>
<tr>
<td>1925</td>
<td>Committee on Pipe Sizes</td>
</tr>
<tr>
<td>1929-31</td>
<td>Committee on Research</td>
</tr>
<tr>
<td>1929-36</td>
<td>T.A.C. on Pipe Sizes for Heating Systems</td>
</tr>
<tr>
<td>1931-34</td>
<td>T.A.C. on Pipe & Tubing (Sizes) Carrying Low pressure Steam or Hot water;</td>
</tr>
<tr>
<td></td>
<td>T.A.C. on Radiation Direct or Indirect</td>
</tr>
<tr>
<td>1932</td>
<td>Committee on Infiltration in Buildings</td>
</tr>
<tr>
<td>1933</td>
<td>Guide Publication Committee</td>
</tr>
<tr>
<td>1932-34</td>
<td>Committee on Research</td>
</tr>
<tr>
<td>1934</td>
<td>Executive Committee</td>
</tr>
<tr>
<td>1934-36</td>
<td>Cooperating Committees- ASHVE, Representative National Research Council</td>
</tr>
<tr>
<td>1935</td>
<td>T.A.C. on Comfort Requirements for Summer Cooling</td>
</tr>
<tr>
<td>1935-36</td>
<td>Committee of the Council on Meetings</td>
</tr>
<tr>
<td>1937</td>
<td>T.A.C. on Comfort Air Conditioning OH-22;</td>
</tr>
<tr>
<td>1937</td>
<td>T.A.C. on Intermittent Heating IP-20Cooling</td>
</tr>
<tr>
<td>1937-41</td>
<td>Executive Committee of the Council</td>
</tr>
<tr>
<td>1939</td>
<td>Committee in Engineering Scholarships</td>
</tr>
<tr>
<td>1939, 41, 41, 42, 45-47, & 1949</td>
<td>F. Paul Anderson Award Committee</td>
</tr>
<tr>
<td>1943</td>
<td>T.A.C. on Radiation w/Gravity Air Circulation</td>
</tr>
<tr>
<td>1943-45</td>
<td>T.A.C. Flow of Fluids through Pipes & Fittings</td>
</tr>
<tr>
<td>1944</td>
<td>T.A.C on Heat Requirements of Buildings</td>
</tr>
<tr>
<td>1944-46</td>
<td>Committee on Research</td>
</tr>
<tr>
<td>1944-46</td>
<td>T.A.C. on Radiation and Comfort</td>
</tr>
</tbody>
</table>

ASHVE President 1940-41, First Vice President 1939-40, Second Vice President in 1938-39, served on the Council 1932-1941, served on Advisory Board 1941-1953, served as Chairman of the Executive Committee, served on many Research Technical Advisory Committees of Society. In 1942, he became the fourth recipient of the ASHVE F. Paul Anderson Gold medal Award for his notable contributions in the advance of heating based on his research work in field of heat transfer and hot water heating and for his services as Society Officers and committee. Thornton Lewis, President of ASHVE in 1929, said of F. Paul Anderson, “He has directed the education of more engineers engaged in the heating and
ventilating profession than any other man in the world.” The award consists of a plaque with a medallion. This is ASHRAE’s highest award. It is given once per year to a member for “notable achievement, outstanding work or service in any field in the Society.” Clearly, he must have been an unusual ASHRAE contributor himself. Voted a Life Member of ASHVE the same year.

In 1924, Giesecke earned his fourth degree, a Ph.D. from the University of Illinois. In 1927, three years after completing a Ph. D. from the University of Illinois, Giesecke returned to Texas A&M as head of the Department of Architecture & College Architect and was named head of the Texas Engineering Experiment Station (TEES) within a year. He was, without question, the first Aggie architect.

TEES was established on August 25, 1914, by the Agricultural and Mechanical College of Texas’ board of directors to conduct engineering research to help build a better society. Its mission was to undertake research that would produce answers to urban difficulties, thus enhancing the quality of life in Texas. The agency's creation coincided with the automobile boom of the early 1900s when the number of cars increased from 15,000 in 1901 to 3 million in 1916 and only 10% of the nation's 2.6 million miles of road were surfaced. TEES responded to the cries for better roads by creating a series of printed bulletins on the best ways to build highways, culverts and bridges. These were widely used by the Texas Department of Highways and Public Transportation. These early research efforts eventually spawned the Texas A&M Transportation Institute (TTI).

Interest in scientific research emerged with the end of World War I in 1919. Americans wanted technology implemented to help them in their everyday life. The country entered a new industrial revolution with automobiles leading the way. Industries such as rubber, glass, fabrics, petroleum, tourism and agriculture emerged. Staffed only with volunteers, TEES continued its highway research and investigations into rural electricity needs and urban sewage disposal. It wasn't until 1921 that TEES received state funding, taking in $6,000 for 1921-1922. The fourth TEES Director F.C. Bolton, as well as the college’s dean of engineering, set out to earn research money rather than wait for it to be appropriated.

“We felt that since we didn’t have the funds to employ men to carry on the work, little could be done. However, we have turned over a new leaf and are not going to wait for more funds, but are going to show results with what we have and then ask for funds to carry on greater work...” - F.C. Bolton

The fifth Director of TEES, was F.E. Giesecke, 1928-1939. TEES budget did not escape effects of the Great Depression, TEES' budget shrank from $15,600 in 1932 to $1,900 in 1933, resulting in withering research efforts and publications. Additionally, during which time he designed several iconic buildings on the university campus while serving as the college architect. He was the author of many textbooks for a long time, paper and articles refer to the partial list of textbooks at the end of the historical Bio. He led the formation and drafted the constitution of the first Alumni Association, the forerunner of The Association of Former Students.

However, the Depression years benefited TEES. The legislature gave the Agricultural and Mechanical College access to a permanent university fund that contained revenue earmarked for use by land-grant colleges. This fund allowed the college to spend $3 million on capital improvements between 1929-1937 more than it had spent in the previous 50 years. TEES used the college’s construction
boom as a focus for research as overseeing these improvements for the college was TEES Director
F. E. Giesecke.

Every major capital improvement undertaken by the university involved TEES. TEES did studies on building
foundations, materials, heating and ventilation systems, air conditioning equipment, water supply and sewage
treatment facilities. Cotton Fiber Testing Lab (1937) - Began to aid the Rural Electrification Administration
(REA) to help bring electricity to rural and farm areas. Numerous campus buildings, see list of buildings designed
herein Fan Testing Lab, Energy Systems Lab (1939) At the close of the 1930s TEES was stronger than any time
in its history. Its budget increased from $1,900 in 1933 to $40,000 in 1939, and the agency established several
significant research trusts. 1928 through 1939, Giesecke designed and supervised the construction of
many campus buildings that are still standing today, including the Academic Building, the Chemistry
Building, the Williams Building, Cushing Library and Hart and Walton halls

In 1937, Reg. F. “Chief” Taylor and Dr. F.E. Giesecke established the original Texas Chapter of
ASHVE. It was headquartered in College Station. Giesecke was the first chapter president and Chief
Taylor was the chapter vice president. Reg. F. Taylor became the president of the Texas Chapter the
following year. By 1939, the Texas Chapter had moved to Dallas. Also, in 1939 Reg. F. Taylor closed
his Dallas office and all operations were run from the Houston office. Two of his Dallas employees who
elected to stay in Dallas formed their own company, Zumwalt & Vinther. In 1939, the decision was
made to split the Texas Chapter of ASHVE into a North Texas Chapter and the South Texas Chapter
Reg. was instrumental in making this change possible. On January 9, 1939, the South Texas Chapter
of ASHVE was chartered. Reg. was a charter member and became the South Texas ASHRAE –
HOUSTON (Formally South Texas) Chapter's first president. We know this chapter today as the
Houston Chapter of ASHRAE, but in the beginning there were only a handful of charter members.
Others included Dale Cooper, C.A. McKinney, A.J. Rummel, A.M. Chase Jr. and Bert Fisher. In the
early years, meetings were held in various cafes around Houston. At times, meetings were also held
100 miles away in College Station.
TAMU Cadet Corp Professor F.E. Giesecke Dr. F.E. Giesecke

Inaugural Co-founder & 1st Texas Chapter ASHVE President in 1937.

ASHVE Society Presidential Member 1940-41.

Presented the South Texas Chapter Charter to Reginald F. Taylor South Texas Chapter of ASHVE as Society First Vice President in 1939, when Texas Chapter of ASHVE split into the North Texas (Dallas) Chapter & South Texas (Houston) Chapters of ASHVE.

Dr. F. E. Giesecke and Reg. F. (Chief) Taylor are ASHVE Society Past Presidential Members and between the two of them are directly responsible for the establishment of the first three Texas Chapters in ASHVE and indirectly responsible for all of the rest of the Texas Chapters of ASHVE & ASHRAE South (Houston) Chapter & North Texas (Dallas Chapter) and the other Texas Chapters that resulted over the years: Alamo (San Antonio) Chapter, Ft. Worth Chapter, West Texas (Lubbock) Chapter, East (Tyler) Texas Chapter, South Texas (Corpus Christi) Chapters a total of seven of the 15 total chapters within ASHRAE Region VIII which is the Premier Region in all aspects of ASHRAE Society Leadership, ASHRAE PAOE Points and Contributions to ASHRAE Research Promotion.
The second from the left is Dr. Frederick Ernst “PAL” Giesecke founding member and First Chapter President of the Texas Chapter of ASHVE in 1937, ASHVE Presidential member 1940-41; The four other men, are young engineers (the one on the left bears a resemblance to Dale Cooper). The second from the right is Reg. F. “CHIEF” Taylor P.E. founding member and Second Chapter President of the Texas Chapter of ASHVE in 1938, Founding member and first South Texas Chapter President of ASHVE (Later changed to Houston Chapter in 1959), Editor of the first Chapter Newsletter distributed to chapter members in October, 1944 named the Hot Air Recorder and ASHVE Presidential member 1953-54. Not Sure Where it occurred but probably College Station and the award or certificate being presented is be the South Texas Charter.
He will be fondly remembered not only for his many fine contributions as an Educator, Engineer and Architect, but for his benevolence to all of those students and others who, came in contact with him appreciated his willingness to mentor, availability for guidance, counsel, and willingness to provide assistance which earned him the “Pal” designation with his peers and others. In 1943, at the age of 74, Giesecke earned his fifth degree in Civil Engineering from Illinois University. Throughout his career, Giesecke wrote numerous books and over 100 scholarly papers and received many honors for his accomplishments.

Giesecke’s life was characterized by his desire to learn by study, experimentation and observation. His daily notebook contained an entry from an experiment he was conducting just two hours before he died of a heart attack at the age of 84 on June 27, 1953 in New Braunfels, Texas where he had retired. Following in Frederick Giesecke’s footsteps, as Aggies and designers who contributed significantly to Texas architecture, were his son-in-law, Preston Geren, Sr., Class of 1912, and his grandson, Preston Geren, Jr., Class of 1945. Texas A&M’s construction education program was established in 1946 as a Bachelor of Science in Architectural Construction. It was a five-year, 178-credit-hour option in the Department of Architecture.
One of the first poured structural concrete Dr. Giesecke is said to have calculated and designed placement of the reinforcing steel and then doubled it to be safe.

The Houston Chapter ASHRAE (formerly the South Texas Chapter of ASHVE) members have had a hand in establishing many of the awards given by ASHVE and/or ASHRAE Society today, such as the old Region VIII F.E. Giesecke Scholarship Loan and later Scholarship Award. The F.E. Giesecke Scholarship Award was set up in 1954 by Clarence L. Fleming, Danny McNeal and Hugh McMillan, Jr. as a scholarship loan fund and later transformed into a scholarship award. With the help of the Giesecke family the fund has been converted to a funded scholarship at Texas A&M University known as the F.E. Giesecke – ASHRAE Houston Chapter Scholarship.
In the midst of the Great Depression, two architects transformed the campus of Texas A&M University with 10 new buildings in just five years. The resulting architectural legacy has received less attention than it deserves, particularly in comparison to the acclaimed campus of the school’s rival, The University of Texas at Austin.

The two universities were in fact founded together. In 1839, plans for a state university were originated by the Republic of Texas, but it was not until 1876 that land grants and an endowment finally facilitated the official opening of the Agricultural and Mechanical College of Texas in College Station. That same
year, the legislature provided a second land grant of 1 million acres in West Texas, and in 1923, the state universities struck black gold as the Santa Rita oil well gushed. It took eight more years before UT Austin and Texas A&M finished negotiations that split the revenues 2:1 in favor of UT Austin. All of this set the stage for the 1930s expansion of the Texas A&M campus.

In 1928, Samuel C. P. Vosper, who taught architecture with Giesecke in Austin, joined him at Texas A&M. Vosper studied architecture at Pratt Institute and Columbia University in New York City before finding his way to Dallas and then Austin. In Austin, he taught from 1922 to 1927 and worked as chief designer for Ralph H. Cameron, for whom he designed several buildings in Austin and San Antonio.

Working together, Giesecke and Vosper, along with Frederick Hensel, the chief planning and landscape advisor, transformed the Texas A&M campus. Not only did they literally turn the campus around, reorienting the main entrance to face east, toward a new state highway rather than west, where the train station was located, but they also constructed the following buildings between 1928 and 1933: Chemistry (1929–30), Cushing Library (1930), Hart Hall (1930), Walton Hall (1931), Administration Building (now J. K. Williams Administration Building, 1932), Petroleum Engineering Building (now Halbouty Geosciences Building, 1932), Agricultural Engineering Building (now Scoates Hall, 1932), Animal Industries Building (1932), Veterinary Hospital (now Civil Engineering Building, 1932), and a horse barn (now TAES Annex Building, 1933). All these buildings, remain on campus, a testament to both their appeal and quality.

The most impressive, due in part to its comparatively restrained use of classical language, is the Administration Building, which serves as a frontispiece for the campus. Vosper’s interest in decoration as a means of expressing the purpose of architecture comes through in many ways here. For example, at the east entrance, the letters “A” and “M” are used to create a grill for the bronze doors, and at the west entrance, female and male figures represent agriculture and mechanics in the bronze doors. The face of an “idealized cadet” is used in the center of the ionic colonnade, and interestingly, the face of a woman can be found to the side, in spite of the fact that women were not admitted to the college for another 30 years.
<table>
<thead>
<tr>
<th>Book Title</th>
<th>Author(s)</th>
<th>Rating</th>
<th>Reviews</th>
<th>Year Published</th>
<th>Editions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Drawing</td>
<td>Frederick E. Giesecke, Alva Mitchell, Henry C. Spencer</td>
<td>3.92</td>
<td>52</td>
<td>1967</td>
<td>12</td>
</tr>
<tr>
<td>Technical Drawing with Engineering Graphics</td>
<td>Frederick E. Giesecke, Ivan LeRoy Hill, Henry C. Spencer</td>
<td>4.00</td>
<td>22</td>
<td>2010</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Graphics</td>
<td>Frederick E. Giesecke, Alva Mitchell</td>
<td>4.20</td>
<td>20</td>
<td>1975</td>
<td>8</td>
</tr>
<tr>
<td>Engineering Drawing: Problem Series 1</td>
<td>Frederick E. Giesecke, Alva Mitchell, Henry Cecil Spencer</td>
<td>4.00</td>
<td>12</td>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>Technical Drawing Problems (Series 1)</td>
<td></td>
<td>4.20</td>
<td>10</td>
<td>1982</td>
<td>2</td>
</tr>
<tr>
<td>Design Technique</td>
<td>Frederick E. Giesecke, John Thomas Dygdon</td>
<td>4.57</td>
<td>7</td>
<td>1983</td>
<td></td>
</tr>
<tr>
<td>Mod Graphics Comm & Solid Modlg W/I-Deas Pkg</td>
<td>Frederick E. Giesecke, Alva Mitchell</td>
<td>4.57</td>
<td>7</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>Introduction To Engineering Drawing For Mae 177</td>
<td>Frederick E. Giesecke, Alva Mitchell, Henry Cecil Spencer</td>
<td>4.29</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Drawing: Problem Series 2</td>
<td>Frederick E. Giesecke, Henry Cecil Spencer, I.L. Hill</td>
<td>5.00</td>
<td>1</td>
<td>1997</td>
<td></td>
</tr>
</tbody>
</table>

Showing 25 distinct works.
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Rating</th>
<th>Reviews</th>
<th>Published Year</th>
<th>Editions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Graphics</td>
<td>Frederick E. Giesecke, Alva Mitchell</td>
<td>4.20</td>
<td>20</td>
<td>1975</td>
<td>8</td>
</tr>
<tr>
<td>Engineering Drawing: Problem Series 1</td>
<td>Frederick E. Giesecke, Henry Cecil Spencer</td>
<td>4.00</td>
<td>12</td>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>Technical Drawing Problems (Series 1)</td>
<td>Frederick E. Giesecke</td>
<td>4.20</td>
<td>10</td>
<td>1982</td>
<td>2</td>
</tr>
<tr>
<td>Design Technique</td>
<td>Frederick E. Giesecke, John Thomas Dygdon</td>
<td>4.57</td>
<td>7</td>
<td>1983</td>
<td></td>
</tr>
<tr>
<td>Mod Graphics Comm & Solid Modlg W/I-Deas Pkg</td>
<td>Frederick E. Giesecke, Alva Mitchell</td>
<td>4.57</td>
<td>7</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>Introduction To Engineering Drawing For Mae 177</td>
<td>Frederick E. Giesecke, Alva Mitchell, Henry Cecil Spencer</td>
<td>4.29</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Drawing: Problem Series 2</td>
<td>Frederick E. Giesecke, Henry Cecil Spencer, I.L. Hill</td>
<td>5.00</td>
<td>1</td>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>Engineering Graphics</td>
<td>Frederick E. Giesecke, Alva E. Mitchell, Henry C. Spencer, Ivan I. Hill</td>
<td>0.00</td>
<td>0</td>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>Engineering Graphics Value Package (Includes Solidworks Student Design Kit 2008 Release)</td>
<td>Frederick E. Giesecke, Alva Mitchell, James E. Novak, I.L. Hill</td>
<td>0.00</td>
<td>0</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>Solidworks 09-10 Student Design Kit with Technical Drawing</td>
<td>Frederick E. Giesecke, Alva E. Mitchell, Henry C. Spencer</td>
<td>0.00</td>
<td>0</td>
<td>2009</td>
<td></td>
</tr>
</tbody>
</table>
This Text Book on Engineering Graphics was widely utilized as the Standard Engineering Textbook for teaching Drafting Standards for many colleges and universities for Engineering Graphics; refer to the appendix of colleges and Universities where this was the accepted textbook.

Headstone of Dr. F. E. Giesecke Life Member of ASHRAE, Society Past Presidential Member 1941-42. He died of a heart attack at the age of 84 on June 27, 1953 in New Braunfels, Texas where he had retired.
17 U.S. Code § 107 - Limitations on exclusive rights: Fair use

Notwithstanding the provisions of sections 106 and 106A, the fair use of a copyrighted work, including such use by reproduction in copies or phonorecords or by any other means specified by that section, for purposes such as criticism, comment, news reporting, teaching (including multiple copies for classroom use), scholarship, or research, is not an infringement of copyright. In determining whether the use made of a work in any particular case is a fair use the factors to be considered shall include—

(1) the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes;
(2) the nature of the copyrighted work;
(3) the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and

Bibliography

2. Academic Photos: http://www.csd1.tamu.edu/~b0x9330/tour/shtmls/acad.htm

3. Texas A&M University Honoring Outstanding Alumni-College of Architecture https://www.arch.tamu.edu/community/formerstudents/outstanding-alumni/past-honorees/24/

5. Images of F.E. Giesecke https://www.google.com/search?q=FE+GIESECKE&espv=2&biw=1280&bih=685&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwjD-OznnbXOAhUG5mMKHTeUDvcQ7AkI Ow

6. Texas Aggie Archives July-August 2015 AGGIENETWORK.COM, by Lane B. Stephenson Class 1977, Frederick Ernest Giesecke “You Know Him by His Works”

8. “exas A&M’S First Family of Architecture” by Ashley Wagner '18 published on 10/03/2017

9. Info on Texas Engineering Experimental Station (TEES) https://tshaonline.org/handbook/online/articles/fgi10

10. "Cushing Memorial Library & Archives, Texas A&M University." Publication of any Cushing Memorial Library material(s) can take place only under the provisions of the fair-use doctrine of the U.S. Copyright Law or by obtaining permission from the copyright holder, which in many cases may not be the Cushing Memorial Library and /or Texas A&M University. The patron will defend and hold harmless the Cushing Memorial Library and the Texas A&M University System, its Board of Regents, its officers, employees and agents against all claims, demands, costs and
expenses including, but not limited to, attorney's fees incurred by copyright infringement, or any other legal and regulatory course of action arising from use of any material obtained from Cushing Memorial Library.

Posting reproductions of materials online in any fashion is a form of publication. For example, posting an image of a manuscript, photo, etc. from our collections to a website, blog, or social media platform.

A Notification to publish form has been provided to Cushing Staff Library personnel.

A search of Cushing's ARCHON database yielded six results. The results show one box identified as "F.E. Giesecke Papers" as well as several other collections that appear to reference him, including correspondence and biographical files. The search results are pasted immediately below.

Records & Manuscripts Texas A & M University Archives Cushing Memorial Library
a. F. E. Giesecke Papers - Fully Processed
b. J. B. Sterns
c. Miscellaneous Grade Reports Collection - Fully Processed, 1892-195?
e. TAMU Archivists’ Collection, 1876-1969 Box 1: Correspondence, 1876-1957
f. REMSTAR 2: Biography Files Row 20: Gastel, Barbara - Gonzalez, Carolina
March 2nd, 1953

Mr. D. E. Cofer
Box 417, Faculty Exchange
College Station, Texas

Dear Mr. Cofer:

Please accept my sincere thanks for your kind letter of February 10th.

I have adopted the names "double cone" and "lower and upper cone" for the paper I am just mailing to Purdue University to appear in the May issue of the Journal of Engineering Drawing.

I will try to secure an extra copy of this publication and will send it to you and you can then pass it on to Dr. Klipple and extend my thanks to him for his kind assistance.

You will be interested in the enclosed circular showing the number of schools in the United States in which the Ciesecke, Mitchell, and Spencer drawing book is being used during the current session. In addition to these schools ten schools in Canada and several schools in other countries are using the book. We are very proud of this list of adoptors but regret sincerely that our book is not being used at Texas A & M where it had its origin.

With kind personal regards,

Sincerely,

(Signed) F. E. Ciesecke

[Signature]
January 30, 1953

Alabama
University of Alabama
University of Alabama (Medical College)
Alabama A & M College

Arizona
Arizona State College (Flagstaff)
Eastern Arizona Junior College
Phoenix Junior College
Arizona State College (Tempe)

Arkansas
Arkansas Polytechnic College
Arkansas A & M College
Harding College
Southern State College

California
San Mateo Junior College
College of the Sequoia
Sala Junior College
University of California (Los Angeles)
Pacific Union College
Armstrong College
Pasadena Junior College
Bakersfield College
Fresno State College
East Los Angeles Junior College
Santa Monica City College
San Jose State College
San Francisco State College
Los Angeles City College
Pasadena City Schools
Pasadena City College
Los Angeles Trade Technical Junior College
WBUA College
University of Southern California
Placer College
Los Angeles Valley Junior College
Long Beach City College
San Diego Vocational Junior College
Reedley College
Modesto Junior College
Glendale College
San Bernardino Valley College
University of California (Santa Barbara)

Colorado (continued)
University of Colorado (Denver)
Colorado State College of Education
Trinidad State College
La Junta Junior College
University of Colorado
Nasa College
Colorado College

Connecticut
Danbury State Teachers College
Hillyer College
Cheshire Academy
Trinity College

Florida
University of Florida
University of Tampa
University of Miami

Georgia
Junior College of Augusta
North Georgia College
Georgia Southwestern College
Middle Georgia College
Georgia School of Technology

Idaho
College of Idaho
Boise Junior College

Illinois
Principia College
Northern Illinois State Teachers College
Northwestern University
North Park College
Western Illinois State Teachers College
Monmouth College
Roosevelt College
Illinois College
Rockford College
Illinois Institute of Technology
Allied School of Mechanical Trades
North Central College
Aurora College
Indiana

Evansville College
Ball State Teachers College
Indiana University (Nokomis)

Iowa

Drake University
Luther College
Wartburg College
Clarinda Junior College
Loras College
Marshalltown Junior College
Iowa State Teachers College
Iowa City Junior College
Central College
University of Dubuque
Iowa State College

Kansas

Friends University
McPherson College
Kansas Technical Institute
State Teachers College (Emporia)

Kentucky

University of Louisville
Eastern Kentucky State College
Murray State College

Louisiana

P. T. Michaux Junior College
Centenary College
N.E., Louisiana State College
Ouachita Valley Vocational School (N. Monroe)
Franklin Parish Trade School
Louisiana State University
Louisiana Polytechnic Institute

Maine

University of Maine
State Teachers College (Carham)

Maryland

University of Maryland

Massachusetts

Lowell Textile Institute
Worcester Polytechnic Institute
Worcester Junior College
University of Massachusetts

Massachusetts (continued)

New Bedford Textile Institute
State Teachers College (Pittsfield)
Tufts College

Michigan

Michigan College of Mining and Technology
(Butte, Houghton)
Michigan State College
Northwestern Michigan College
Lawrence Institute of Technology
Aquinas College
Western Michigan College of Education
Central Michigan College of Education
Michigan College of Mining and Technology
(Butte, St. Mary's)
Northern Michigan College of Education

Minnesota

State Teachers College (Kendal)
Gustavus Adolphus College
Bemidji Junior College
State Teachers College (St. Cloud)
Macalester College
University of Minnesota
University of Minnesota (St. Paul)
St. John's University
St. Mary's College
Rochester Junior College
Itasca Junior College

Mississippi

Mississippi State College

Missouri

Missouri School of Mines
St. Louis University
Southeast Missouri State College
Lincoln University
Southwest Missouri State College
William Jewell College
Northeast Missouri State College
Drury College
Jefferson City Junior College
University of Missouri
Hammond La Grange College

Montana

Rocky Mountain College
College of Great Falls
Eastern Montana College of Education
Montana School of Mines
Adoption List for Giesecke-Mitchell-Spencer: TECHNICAL DRAWING, third edition

Nebraska
State Teachers College (Kearney)
University of Nebraska
Midland College
Nebraska Wesleyan University

Nevada
University of Nevada

New Hampshire
State Teachers College (Keene)

New Jersey
State Teachers College (Trenton)
Rutgers University
Fairleigh Dickinson College
Newark College of Engineering

New Mexico
University of New Mexico
New Mexico College of A. & M. Arts

New York
Syracuse University
Cornell University
Manhattan College
Adelphi College
Drake Business School
N.Y.S. Inst. of Applied A. & S. (Binghamton)
Union College
Wagner College
Hofstra College
N.Y.S. Inst. of Applied A. & S. (West Hartford)
Rensselaer Polytechnic Institute
College of the City of New York
University of Buffalo
U.S. Merchant Marine Academy
Vassar College
Academy of Aeronautics
N.Y.S. Inst. of Applied A. & S. (Buffalo)
The Delahanty Institute

North Carolina
East Carolina Teachers College
Pfeiffer Junior College
Asheville-Wilmore College
Elon College

North Dakota
University of North Dakota

Ohio
Wittenberg College
General Electric Company
Bowling Green State University
Denison University
Ohio University
Wilberforce Junior College
Findlay College
University of Toledo
Baldwin-Wallace College
Ohio Northern University
Penn College

Oklahoma
Langston University
School of Technical Training
Seminole Junior College
Northeastern Oklahoma A. & M. College
Murray State School of Agriculture
Northern Oklahoma Junior College
University of Oklahoma

Pennsylvania
Franklin and Marshall College
Haverford College
State Teachers College (California)
Westinghouse Technical High School
Penn State College
St. Vincent College
Crown City College
Saint Joseph College
Washington and Jefferson College
York Junior College
University of Pennsylvania
State Teachers College (Millersville)
Drexel Institute of Technology
Cannon College
Temple University
Penn State College (McKeesport)

South Carolina
State A. & M. College

South Dakota
South Dakota State Teachers College
Augustana College
Tennessee

East Tennessee State College
Memphis State College
University of Tennessee Junior College
University of Tennessee
Vanderbilt University
University of Chattanooga
Christian Brothers College
Middle Tennessee State College
Lincoln Memorial
Tennessee A. & I. State University

Texas

Tyler Junior College
Texas State College for Women
Sam Houston State College
Temple College
Austin College
Lamar State College of Technology
North Texas State College
Kilgore Junior College
Wharton Junior College
Laredo Junior College
University of Houston
Texas Western College
San Angelo College
Tarleton State College
Odessa College

Utah

University of Utah
Weber College

Vermont

University of Vermont

Virginia

Virginia Polytechnic Institute
University of Richmond
Hampton Institute
Roanoke College
University of Virginia
Richmond Professional Institute
College of William and Mary (Norfolk)
University of Virginia (N. Charlottesville)

Washington

Yakima Valley Junior College
Olympic College
Antelope Valley Junior College
June 20, 1953.

Dr. D. E. Cofer
Box 211, Faculty Exchange
College Station, Texas

Dear Dr. Cofer:

I take pleasure in enclosing 11 pages of my auto-biography and expect to send you about 4 more next Tuesday.

The story is still quite unsatisfactory but I do not have time now to rewrite it and I hope you can select sufficient material for the short story you wish to write.

If you should desire additional details about any one feature of my story please write me and I will try to supply them.

With kind personal regards,

Sincerely,

F. E. Giesecke

FBG: sch
AUTO BIOGRAPHY

F. E. Giesecke

Born in Latiuim, Washington County, Texas, June 28, 1869.

Mother - Wilhelmine Groos of San Antonio, Texas

Father - Julius Giesecke, Capt., Co. G, Fourth Texas Cavalry C S A

Parents moved to New Braunfels, Texas, September, 1873 where father had been
elected Technical Manager of the New Braunfels Woolen Mfg. Co.

Entered New Braunfels Public School in September, 1876 and graduated in June
1882. Entered German-English School of San Antonio September 1882 and graduated
June, 1883.

Entered Texas A & M College, September 1883; contracted typhoid fever in
December just before Christmas vacation and went home to New Braunfels and returned
to A & M early in March after Professor Robert F. Smith had written my father that
he thought I could make up the work I had missed during January and February.

During my first year in college I roomed with two seniors - Gus Giesecke and
B. E. Koehs - there was no hazing and I pursued my studies regularly. Every even-
ning I studied all of my lessons for the following day. Every morning I reviewed
my lessons before going to class; every week-end I reviewed the week's work, and
before every examination I reviewed the entire book on which the examination was to
be based.

As a result of this systematic method of studying I stood at the head of my
class during my entire college course, held the highest military rank, and won the
medal in physics offered by Professor Bringhurst and also the medal in mathematics
offered by Professor McInnis.

During my senior year Gen. Hardeman, A & M College Business Manager and my
father's commanding officer during the Civil War, offered to try to secure a job
for me as mechanical engineer in the new state capital building in Austin but I
had noticed that Professor Whitlock needed assistance so I applied for a
position and was appointed Instructor in the Mechanical Department at the close of
my senior year.

This date of birth of Dr. F. E. Giesecke was corrected to read Jan. 28, 1869,
by Mrs. Minnie Giesecke Wittig, his daughter, in a letter to SBC, July 3, 1932.
During the next two sessions, 1886-1887 and 1887-1888 I assisted Professor Whitlock in teaching shop-work and assisted Mr. Harbers, the shop foreman, in maintaining the shops and the shop equipment and incidently also in maintaining the first telephone line in Brazos County. The line connected an office in Gathright Hall at College Station with the telegraph office in Bryan; the line was grounded at both ends and was out of order after practically every high wind.

While I was Professor Whitlock's assistant I began graduate study as a candidate for the degree of Mechanical Engineer; I received this degree in June, 1890.

During these two sessions Professor Whitlock taught the classes in drawing in addition to the classes in shop work but at the end of the second session it was decided to create a Department of Drawing and I applied for appointment as the teacher of drawing. I remember distinctly that Judge C. G. Garrett of Brenham, President of the Board of Directors, met me on the parade ground during the Final Dress Parade and asked me if I would like to make teaching my life work; I replied that I would and he said, "Well, we have decided to try you and have placed you in charge of the new department."

At that time I was 19 years of age, was Head of the Department of Drawing, and had no special preparation for my new duties other than the instruction I had received from Professor Whitlock so I began an intensive study to prepare myself for the teaching of drawing.

At that time there were no text books that I could use in my class work. The best material I could find was a series of articles in Scientific American by a book "Practical Hints for Draftsmen" by Professor Stevens Institute. With these two teaching aids and the training I had received from Professor Whitlock I prepared a series of problems which I used with my classes and, after two years use, published as Mechanical Drawing, Part I.

My compensation for the first year was free room and board and $60.00 per month for 9 months. The salary was low but expenses were similarly low so that I
saved enough during the first three months to make a loan of $100.00; the note drew
interest at the rate of 12 per cent per year and was endorsed by G. W. Norrell, a
Bryan druggist, who had arranged the loan as a personal favor to me. I heard of cases
where borrowers paid interest as high as 18 per cent per year. These high rates
were possible because real estate was very cheap and was advancing rapidly in
price.

In 1889 Professor McInnis told me that Dr. Francis was to be married and the
College would build a house for him and asked me if I could prepare the necessary
plans and specifications. I told him I could, even though I had never prepared
plans and specifications for a building.

After considerable study I completed my assignment and the building was erected
by a Bryan contractor according to my plans and occupied by Dr. Francis as his
home until the time of his death in—.

About a year after Dr. Francis had married, on March 5, 1891, I married Bulda
G. Wiesnake in New Braunfels. Prior to my marriage I asked Professor Prinshurst,
who was then the acting President of the College whether the College would build
a house for me and he replied, "The College will build a house for you before you
can get a wife." So I immediately prepared the plans for a house similar to the
one designed for Dr. Francis. The building was located next to Dr. Francis' house
but was not completed until 3 months after I had married; during these three months
we had a room in Professor Whitlock's house and took our meals in the mess hall.
Our first meal in our home was during commencement 1891 and we had as our guest, Mr.
Louis Henne of New Braunfels who had come to the College to see his son — — — —
who was a student at the College.

In preparing the plans for my home I designed the roof so that its sides were
steeper than its front and rear in order to increase the length of the ridge and
thereby improve the appearance of the house. The builder, George Jenkins of
Bryan, told me he could not build the roof in that way - that the roof would have to
slope equally on all sides. The trouble with George was that he had never studied
geometry, so I offered to teach him; he accepted my offer and came to the College every Sunday morning; we met in the carpenter shop and I helped him with his studies. One morning Professor Robert F. Smith came by the shop and when he saw us at work he cautioned us "Sunday work will never prosper." After 62 years I remember Professor Smith's remark distinctly.

Mr. George Jenkins was very able, very industrious, and very ambitious but, unfortunately, his life was cut short; he was bitten by a rabid dog and died of hydrophobia while he was enroute to a Pasteur Institute; at that time Texas had no institution for the treatment of rabies.

Mrs. Jenkins knew of our friendship and gave me all the book on architecture which George had acquired for use in his professional work.

To prepare myself better for my duties as a drawing teacher I spent a part of the summer of 1889 in Houston taking lessons in free-hand drawing from an artist who had been brought to Houston by the railroad companies to prepare illustrations for advertising purposes.

In the summer of 1890 I attended a Chautauqua at Round Lake, New York, and took lessons in charcoal drawing from a New York artist.

In the summer of 1891 I spent a part of the summer as a draftsman in the Land Department of the Houston and Texas Central Railway Company.

In my graduate study I included a course in descriptive geometry given by Professor J. H. Kinsley who had come to the College from Washington University in St. Louis and brought with him a copy of the problems used there in descriptive geometry. I worked all of these problems and then bought and studied a German text on descriptive geometry by Chr. Wiener and, after that, prepared a course in descriptive geometry for my students in drawing which I published in 1904 under the title of Mechanical Drawing, Part II.

After I had prepared the plans and specifications for my house my next assignment for the College came in 1906; it was to prepare the plans and specifications for a brick warehouse. This was the first brick building for which I prepared
plans. I made it of slow-burning construction. The building is now used to house
the fire engines. The College paid me a fee of $125.00 for this design.

About this time I was elected a member of the American Institute of Archi-
tects and soon thereafter I joined Mr. Overbeck of Dallas, Mr. Sanguinetti
and Mr. Staats of Fort Worth, Mr. Lorchen of Houston, Mr. Ayers of San Antonio, and
Mr. Trost of El Paso in organizing the Texas Chapter of the American Institute of
Architects. I was elected the first secretary of the chapter.

By this time I had been doing quite a little architectural work; some for the
College and some in private practice for other clients but had never had any
instruction in architecture so by the summer of 1931 I attended Cornell University
and studied architectural drawing, heating and ventilating, and other subjects.
The following summer I went again and was then admitted as a graduate student and
candidate, in absentia, for the degree of Master of Mechanical Engineering, with the
major subject Highspeed Engine Design and the minor subject Building Construction.
I completed the minor subject but not the major subject so I did not receive a
degree from Cornell University.

In the summer of 1898 I went to the Massachusetts Institute of Technology and
took the course in Architectural Design. In 1903 while Dr. Houston was President
of A & M College I asked for a year's leave of absence to study at the Massachusetts
Institute of Technology. My request was granted together with my regular salary
for the year.

When I had completed the year's work at M I T I received the degree of S.B.
in Architecture (the engineering option) before returning to A & M I organized the
degree course in Architectural Engineering and of the senior CE students trans-
ferred to the new course and received their degrees in Architectural Engineering
in 1906.

For a number of years I had been interested in hot-water heating but I did
not know how to design such a system correctly. I was unable to find out while I
was taking the course in heating and ventilating and other subjects at the Cornell
University so while I was taking the course in Heating and Ventilating
at the Mass. Inst. of Technology I asked for a year's leave of
absence to study at the
Technical University at Berlin. My request was granted together with one half of my years salary and I attended the two semesters from 1905 to 1907 and took courses in heating and ventilating, reinforced concrete construction, architectural design, history of architecture and history of art; during the two vacations I traveled in Germany, Switzerland, Italy, Greece, France and England primarily to study architecture.

During my course in heating and ventilating under Professor Rintaschel I learned how to design hot-water heating systems and, after my return here I explained the method in an article published in Vern Farmin Heating and Ventilating.

One of the comments on the article came from

Since the publication of my article the method is quite well understood by heating engineers and is published in practically every text book on heating and ventilating.

About 1927 the first college dormitory, Fruen Hall, was erected. At various time after a hard rain I had seen a pool of water standing against the front wall of the building. Before very long the front wall settled to such an extent that the south end wall developed a crack so large that there was danger of the ceiling joists pulling out of the wall.

I was instructed to repair the building, so I had the ground graded around the building so that surface water could not reach the building and had the roof leaders arranged so that water coming from the roof was discharged at a considerable distance from the building and had the cracked wall reinforced and repaired.
With these improvements the building has now served its purpose for about 60 years without further failure.

The experience with that building convinced me that, at College Station, it is necessary to keep water away from the foundation of buildings if the buildings are to remain intact.

About 1910 I prepared plans for the Shirley Annex, a building erected on the college campus by a group of College employees to provide rooming and boarding facilities for college employees. In this design an effort was made to secure a good building at as low a cost as possible. It was decided to install a one-pipe steam heating system and since I thought that, as commonly installed, the steam pipes were too large and a saving could be effected by using smaller pipes so an experimental set-up was made in the Mechanical Engineering shop and it was determined at what rate steam would flow through pipes of certain sizes and, having done this, the system for Shirley Annex was designed accordingly. Soon after the heating system had been put into operation it was found that the pipes were too small—I had failed to realize that while steam was flowing in the pipe to the radiator the water of condensation had to flow out of the radiator through the same pipes in the opposite direction. So a second experimental determination had to be made; this was done and the results are published in Transaction, ASME, Vol., pg. —The Critical Velocity of Steam in One-Pipe Systems.

In 1912 I decided to move from the A & M College to the State University; at commencement in 1912 we had just finished the plans and specifications for the Academic Building and for Sbisa Hall. Governor Colquitt had come to attend the commencement exercises; some members of the Board of Directors asked him who was to employ to supervise the construction of the Academic Building. The governor suggested Giesecke; the directors replied "Giesecke is going to the University". The governor said "The professors there are not very busy; Giesecke can do his work at the University and go to College Station from time to time to supervise the work."
As a result of this interview I was employed to supervise the construction of the Academic Building and given a full time assistant, P. M. Geren of Fort Worth.

About two or three years after Sbisa Hall had been completed and while I lived in Austin I learned that a serious crack had developed in the wall near the south corner of the dining hall and then President Bizzell was uneasy about the safety of the building, so I requested permission to examine the building. This was granted and I found that the connection between the roof leader and the drain pipe which was designed to carry the roof water away from the building had broken and that, consequently, every time it rained the ground under the south corner of the building was soaked with water; this caused the settlement of the corner and the crack in the wall. At my suggestion the roof leader which was concealed in the wall was abandoned and replaced by a roof leader exposed on the outside of the wall and connected to a drain pipe which would lead the roof water away from the building. The crack in the wall was then repaired and, so far as I know, the wall has remained intact during the last 36 years.

The Academic Building stood well for about 30 years and then developed several cracks near the south end; I have not had an opportunity to examine the building but I believe the cracks have the same or similar cause as the cracks in Pfaffer Hall, Sbisa Hall mentioned above, and Ross Hall mentioned below.

About 1920 it was decided to build the University Baptist Church in Austin and a Philadelphia architect was employed to design the building. When the architect saw how buildings adjacent to the site had cracked he became uneasy about the foundation design and asked me to design the foundation for him which I did.

The construction of the foundation and of the basement was carried on during the summer of 192[3] when the basement had been completed, work was interrupted to await additional funds; the basement was used for services.

About March of the following year the pastor told me there was something wrong with the building and asked me to examine it. The foundation of the building
rested on a ledge of stone about 10 ft below the surface. The floor of the basement a concrete slab was about 4 ft above the ledge of stone which supported the foundation. The material between the ledge of stone and the basement floor was a bed of yellow clay. This layer of clay was dry when the construction was carried on during the hot summer months and during the following winter and spring moisture had entered the building from a subterranean flow and the 4 ft layer of clay had become moist and swelled about 4 inches and in doing so had lifted the basement floor and with it the columns which supported the roof of the basement. I placed a sledge hammer between the basement floor and the top of the concrete column on which the floor had originally rested and photographed it and published the picture together with a short article in Engineering News Record, Vol. 86, pp 192-193: Columns and Walls Lifted by Swelling Clay under Floor.

Major Hawley of Fort Worth told me that my article was the first of its kind ever published anywhere.

This experience with swelling clay led to studies at Austin and at College Station to determine how deep the foundation of a building should be to reach a depth at which no seasonal variations occur in the moisture content of the soil. See A & W thesis by Glenn, E.W. The lesson learned is that while in northern countries foundations should go below the frost line and in southern countries they should go at least to the constant moisture content line.

About the American Society of Heating and Ventilating Engineers was looking for a Director of the Secretary's Research Laboratory. This position was offered to me and I went to Pittsburgh for an interview. I was offered a salary materially better than my University salary together with the offer to pay all costs of moving from Austin to Pittsburgh, but I decided to stay with the University and with my relatives and friends in Texas.

While I was Head of the Division of Engineering Research, many studies were conducted in the laboratory which related to concrete. One study was intended to determine the effect of rodding concrete during the periods of initial and final
setting; the reason was that it was generally believed that the setting process of concrete was one of crystallization and that it was dangerous to disturb or jar concrete during the setting process.

The laboratory tests showed that it was not harmful but that it was beneficial to rod concrete until it had practically acquired its final set; this led to the preparation of two papers, *Effect of Rodding Concrete*, Proc. ASTM, Vol. 20, pp. 219-232 and *Variation in the Effect of Rodding Concrete*, Proc. ASTM, Vol. 21, pp. 1008-1012.

These publications paved the way for the use of premixed concrete which is now so very common throughout the United States.

Dean Woolrich of the University of Texas told me that one of the officials of TVA told him that when one of the contractors asked permission to use premixed concrete he granted the permission because he had read my papers in the ASTM Proceedings.

In 1927 I decided to move from the University to A & M College to become Director of the Engineering Experiment Station so that I could devote my entire time to engineering research; however circumstances changed this plan and I began my work at the College as Professor of Architecture, College Architect, and Director of Engineering Experiment Station. A few years later I was relieved of the teaching of architecture and was then Professor of Engineering Research, Director of Engineering Experiment Station, and College Architect.

About 1928 the Texas Legislature appointed a committee to study prison construction and prison reform and authorized the committee to appoint an architect or engineer to assist the committee in its study.

The committee appointed me on the recommendation of my friend Erwin Astin of Bryan and I was with the committee during the tour of the inspection of the leading prisons in the United States.
When we were in New York an official of the Danish Government told us that the prison system of New York was good but that the prison system of Denmark was much better. This statement created in me the desire to extend my study of prisons to Europe, so, when I returned to the College I requested a leave of absence of about 2 months for the purpose of visiting Europe to study prison systems and research stations working with textiles, particularly with cotton fibers. The request was granted and Mrs. Giesecke, our daughter, Minnie, and I left for Europe. I took with me a letter of introductions from Governor Moody.

I visited the prisons in Denmark, Germany, Czechoslovakia, Austria, France, Switzerland, and England.

Before visiting a prison I sent a copy of Governor Moody's letter to the American Consul and asked him to arrange for my visit with the prison authorities. This was always done and, as a result, my visits were very profitable and also very pleasant.

I described the results of my study in a series of articles which I sent to Mr. Thornton thinking that he would rewrite them for the Dallas News but he simply forwarded them and they were published in the Dallas News as I had written them.

When I returned to the College, about 1930, Mr. Harburger, the Supt. of Buildings and Grounds, told me that Ross Hall had been condemned and would be demolished as soon as sufficient funds were available to pay the cost of demolition.

As soon as I heard this I called on President Walton and told him that it would be a mistake to tear down Ross Hall because the expenditure of about $1000.00 would renovate the building so that it could be used for a number of additional years.

President Walton then instructed me to do what I thought should be done to save the building. In response thereto I had the ground graded all around the building to keep surface water from the building; had the roof leaders repaired, and connected to drains so that the water was carried from the building; had the cracked walls repaired and reinforced where necessary, and then moved my office into the building; soon thereafter other departments moved into the building and, so far as I know, the
June 23rd, 1953.

Dr. D. B. Cofer
Box 211, Faculty Exchange
College Station, Texas

Dear Dr. Cofer:

I take pleasure in enclosing herewith page 18 to 18 inclusive. I had to hurry through the last few pages in order to complete them to send to you today but I assume that you are interested primarily in the early period of my practical work so I hope that what I send you is satisfactory and I shall be glad to give you any additional details that you might need.

I also have a clipping regarding my Pittsburgh offer which was given to the Press by Dr. Splawn but I have misplaced it. If I should find it I will mail it to you. My salary offer from Pittsburgh was $9000.00 and my University salary was $6,500.00 so there was a difference of $2,500.00 which Dr. Splawn mentioned in his press report.

I have forgotten to say a word about my war record. I had a service commission as major in the engineers. I took a physical examination for assignment to active duty but was rejected because my cardiogram was not satisfactory.

I thought there was nothing wrong with my heart so I appealed to the San Antonio Board but was rejected by them also. Two years later I took a third physical examination and was rejected again. Then I resigned my commission.

I thank you sincerely for your very kind interest in my record and remain, with best wishes,

Very truly,

F. E. Giesecke

[F. E. Giesecke's signature]

Last letter Dr. Giesecke to
Dr. Cofr. J.
In the summer of 1891 I attended a meeting in Columbus, Ohio which had been called to form an organization of engineering teachers. The association was not formed at that meeting but was formed at the next meeting which was held in Chicago in 1893. The name adopted was Society for the Promotion of Engineering Education, S P E E and all who attended the Columbus meeting were included as charter members; so, although I did not attend the Chicago meeting, I am a charter member of the Society and now evidently the only living charter member. The name of the society has since been changed to The American Society for Engineering Education, A S E E.

While I was Head of the Division of Engineering Research at the University of Texas a representative of the National Research Council delivered an address at the University in which he stated that the National Research Council was always willing to cooperate with engineering experiment stations which are directed by persons who have doctor's degree or who have the equivalent training. Since I did not have a doctor's degree and since it would be very difficult to show that I had the equivalent training I concluded that I should either secure a doctorate or resign my office as Head of the Division of Engineering Research.

After some study I ascertained that I had sufficient preparation so that if I could spend a year in residence study at the University of Illinois I might secure a doctorate from the University of Illinois. Consequently I applied for a year's leave of absence which was granted but I lost my entire years salary.

I went to the University of Illinois and studied under the guidance of Professor A. G. Willard, Head of the Department of Mechanical Engineering, and received my doctorate in 1924.

About 1942 the University of Illinois, the Institute of Boiler and Radiator Manufacturers, and the American Society of Heating & Ventilating Engineers planned a study to determine the rate of heat emission and other properties of radiators and convectors, and the University of Illinois offered me a six-months appointment, beginning March 1, 1943 as Special Research Professor of Mechanical Engineering in
the Engineering Experiment Station at a salary of $400.00 per month to participate in this study. To accept this offer I applied for and received a leave of absence from the College for the 6-month period.

The principal results of this study are published in Bulletin No. 2, University of Illinois - Heat Emission of Cast Iron Radiators by Giesecke and Kratz.

About April or May of that year I was informed that I would have been appointed a member of the Texas State Board of Health if I had had a degree in civil engineering as required of the non-medical member of the Board. So, to provide for possible future use, while I was at the University of Illinois, I completed the requirements for the degree of Civil Engineer by supplying evidence of my qualifications for the degree and the degree of Civil Engineer was conferred on me by the University of Illinois in June 1943.

In 1900 I published my first text book - Mechanical Drawing, Part I; this was followed in 1904 by Mechanical Drawing, Part II, and in 1909 by Mechanical Drawing, Part III.

In 1928 Professor Mitchell, who succeeded me as Head of the Department of Drawing, joined me and we revised and enlarged Mechanical Drawing, Parts I, II, and III and published them in one volume as Mechanical Drawing.

In 1933 Professor Spencer, who succeeded Professor Mitchell as Head of the Department of Drawing, joined Professor Mitchell and me and we revised and enlarged Mechanical Drawing and published it as Technical Drawing.

In 1934 we transferred the publication rights of Technical Drawing to the Macmillan Company of New York; this company published its first edition of Technical Drawing in 1936; the second edition in 1940, and the third edition in 1949.

Technical Drawing is now being used as a text in about 240 schools in the United States; in addition it is used in 10 schools in Canada and in several schools in other countries.

So far, 267,073 copies of Technical Drawing have been sold by The Macmillan Company; on an average, about 15,700 books per year. It is safe, therefore, to
assume that at least 15,000 young men in the United States and Canada are profiting annually by work which originated and developed by Texas A & M teachers at Texas A & M College.

After having published my drawing books I published a book on descriptive geometry and in one of the books I included a chapter on axonometry; so far as I can determine this publication of axonometry was the first publication in the United States; I had learned about it from German books on Descriptive Geometry.

Throughout my professional work the knowledge of the German language was of very great value to me.

In 1940 I was elected President of the ASHVE. Following the usual custom I visited many of the local chapters and spoke on a technical subject. I selected my subject - Radiant Heating and Radiant Cooling. Later I developed these talks into a series of five articles which were published in Heating, Piping, and Air Conditioning and which were later published in a pamphlet form to be given as premium to the new subscribers of the magazine. This series of articles was the first published in the United States dealing with radiant heating and radiant cooling. I had derived my information from German publications.

In 1941 I was awarded the F. Paul Anderson medal by the ASHVE for distinguished service in the field of heating and ventilating.

In March 1945 I decided to sever my official connection with the A & M College and submitted my resignation to take effect on September 1st at the conclusion of 59 years of service, 44 at Texas A & M and 15 years at Texas University.

I moved from College Station to New Braunfels, Texas where I had acquired the old family homestead and where I hope to spend the remaining years of my life.

After leaving A & M College I continued my professional work at New Braunfels as well as I could with the limited means available.
I completed work on a book - Hot Water Heating, Radiant Heating and Radiant Cooling - which I published privately and of which about copies have been sold.

I also prepared three technical papers which were delivered at the annual meeting of the ASHVE, namely, Night Air Cooling, Jan., 1950, Venting Hot Water Heating Systems, Jan., 1951, and Two Methods of Calculating the Friction in Pipe Lines, Jan., 1952.

For the past few years I have been working as a consultant for the Acme Brick Company in connection with their Ceramic Home Research Project conducted by the University of Texas.
To all who are interested in *Radiant Heating* and *Radiant Cooling*

GREETING:

This circular describes briefly my latest book, *Hot Water Heating, Radiant Heating,* and *Radiant Cooling.*

The book is bound in cloth, has 260 pages, 82 illustrations, and is divided into 25 chapters.

The contents of the book are described in the following review published in Vol. 15, No. 150, of...

JOURNAL of THE INSTITUTION OF HEATING AND VENTILATING ENGINEERS

75 EATON PLACE, LONDON, S.W.1.

"This excellent little book of about 260 pages—appears to be in part a revised summary of some of the author's many contributions to the American technical press, so well appreciated by many English readers. It shows some evidence of its composite origin.

"It is obviously the product not only of a wide theoretical and practical knowledge of the subject, but also of careful preparation.

"The author has the knack of writing clear descriptive details and even explanatory calculations without boring his readers. 'Hard writing makes easy reading.'

"The book as a whole constitutes not only a singularly complete introduction of the subject to beginners, but is also well worth reading line by line even by advanced technicians who wish to improve their understanding of every generally known branch of the space-heating business. We do not know of a more comprehensive summary within a reasonable compass.

"The text is divided into 25 short chapters, each branch being separately dealt with. The first three are introductory and deal with the elements out of which the whole science is built up—first principles, heating requirements, heat emissions of various types of heating elements, principles of circulation, etc.

"The next eleven chapters deal with the practical details of design of different types of ordinary installation, giving in each case the fundamental principles of each type and clear examples of the correct methods of calculation applicable to each type of system, these being accompanied by numerous appropriate tables, graphs, and sketch drawings.

"There follows a series of four chapters entitled 'Guides for the Design and Installation' of so-and-so, which lay down the order in which the various steps of the design and calculation of the different types of system
are most logically made in order to avoid repetition, subsequent correction, and alteration, so as to save time and labor—a typically American idea.

"There follows a section which appears to us to be the clearest condensed description hitherto published of the theory and practice of the ‘radiant’ or ‘panel’ system of heating and cooling. This section of the book commences with a clearly written and very informative chapter on the fundamental physical principles of radiation which should be (but usually are not) familiar to every heating engineer.

"This is followed by a chapter on the methods of calculating the surface temperature of panels—both air and water heated.

"The next chapters describe the design of warm-air and warm-water heated panels with illustrations of their application to different types of floor and wall construction. Full descriptions are given of the methods of calculation, shorn of most of the complicated mathematics, applicable to that apparently simple, but really, in its scientific aspect, immeasurably complicated system.

"It is surprising to learn that Americans have been deterred from developing this system by fear of the technical difficulties and scientific uncertainties, and of the legal situation which might have arisen from an English patent which expired 25 years ago. This kind of attitude is not what one would describe as ‘typically American.’ Without this reluctance the exploitation of this export to the U. S. A. might have been of much more help in reducing the dollar shortage with which we are afflicted at the present time.

"The book is one of the most satisfying we have read on this subject and should be not only on the shelves, but its contents should be in the mind of every fully educated engineer.”

A.H.B.

The price of the book is $4.00 per copy; a discount of ten per cent will be allowed on orders for two or more copies to be shipped to the same address. It is requested that orders be accompanied by checks or money orders to avoid the expense of keeping records of small accounts.

An order form is attached for convenience in ordering.

F. E. Giesecke

President (1940) A. S. H. & V. E.
THE TECHNICAL BOOK CO.,
P. O. Box 62, Austin, Texas.

Gentlemen: I enclose check □ money order □ for $________ for which please send ________ copies of HOT-WATER HEATING, RADIANT HEATING AND RADIANT COOLING, postpaid, to

Name__
Street..
City_________________________ Zone_________________________ P. O. Box_________________________ State______________
Mr. Chairman, Members of A.S.H.V.E., honored guests, ladies and gentlemen, I am
honored to be your speaker on this occasion. You have not here this evening for two
purposes, first to honor an outstanding and beloved former member of the American
Society of Heating and Ventilating Engineers and second to start an educational fund
that in future years will help worthy engineering student complete their education.
I commend you for both of these purposes for they are worthy objectives for any group
of professional men.

Many of you men knew Dr. Giesecke but many others only knew of him. For those of
us who knew him well and worked with him we considered it a privilege, since to know
him was to love and appreciate him. Since this is my feeling, I felt that it would
be eminently fitting, this evening, for me to try to share with you some of the things
about the life and accomplishments of this man whom you are honoring and for whom you
are naming this educational fund.

Fredrick Ernst Giesecke was born at Latium Texas near Brenham, on January 26, 1869.
His father was captain Julius Giesecke, Fourth Texas Cavalry and his mother, Wilhelme
Gross of San Antonio. The family moved to New Braunfels in 1872 where Ernst entered
public school in 1876 and finished in 1882. The following year he completed the Ger-
man English school in San Antonio at the age of 14.

In the fall of 1883, Ernst entered the A & M College of Texas. He was smart
scholarly and ambitious. His study habits were extremely methodical and his grades
were outstanding. He graduated with a B. S. degree in Mechanical Engineering in 1886,
at the age of 17 years and his grades showed 93 A's. In his senior year he was Cadet
Captain, the top ranking officer in the student body. He stood at the head of his classes
and won medals in both mathematics and physics. Because of his outstanding record he
was immediately named an instructor in Mechanical Engineering at a salary of $60.00
per month plus room and board, for 9 months.
Within three months he had saved enough money to make a $100.00 loan which bore 12% interest. In those days many notes bore 18%.

A small steam engine which he and four of his classmates made as a senior project was shown at the Dallas Fair in the fall of 1886, and has been shown at the Texas State Fair a number of times in recent years. It is still in excellent operating condition and is in the Mechanical Engineering laboratory at Texas A & M.

During a summer, shortly after graduation, he went to Houston and studied freehand drawing under an artist from New York who had been brought down by the Southern Pacific Railroad Company to prepare advertising illustrations. The next summer young Giesecke worked as a draughtsman for the land department of the railroad. His drawings were pieces of art, as the perfection of detail and the lettering were superb.

He studied Descriptive Geometry in his spare time under a Professor who came to A & M from Washington University in St. Louis. He then bought and studied a book on the subject written by a German. He later wrote a book on Descriptive Geometry, which was one of the early American texts on the subject.

In 1888 Mechanical Drawing was separated from Mechanical Engineering and young Giesecke was named its first department head at the age of 19. He had been studying part time and received the degree of Mechanical Engineer from the College in 1890.

Young Giesecke took summer courses in charcoal drawing in Round Lake, New York the summer of 1889 - in experimental engineering at Cornell University in the summer of 1893, in architectural drawing at Cornell in 1894 and in architectural design at M. I. T. in 1898.

About 1889 the President of the College asked Professor Giesecke if he would draw up the plans and specifications for a house for a newly employed head of the Veterinary Department. This was Dr. Mark Francis, (a young "wipper-snapper", in the eyes of the Texas Cattleman’s Association at that time, but 30 years later this same organization
voted unanimously that Mark Francis had made the greatest contribution to the Texas Cattle industry of any living man).

Following this Professor Giesecke drew plans for several other campus homes, since there was no town adjacent to the College and the College had to supply quarters for its faculty. In 1891 Professor Giesecke told the acting president, Professor Bringhurst', that he would like to design a home for himself. Professor Bringhurst told him to go ahead and they would have the house built before he got a wife. In this he was mistaken for on March 5, 1891 Professor Giesecke married Miss. Bula Gruene of New Braunfels and brought her to the A & M Campus as his bride. As the years pass four children were born to them, Bertram, Alma, Linda and Minnie.

He asked for and received a years leave of absence, with pay, to do graduate study at M. I. T. from which he received an S. E. degree in Architecture in 1904.

While doing advanced study at Cornell and M. I. T., Professor Giesecke found that he could not get reliable information on hot water heating systems and their design. Again he asked for a years leave of absence to go to Europe for a year of study at the Technical University of Berlin. His request was granted and he was given the leave with half pay.

While there he took courses in heating and ventilating, reinforced concrete construction, architectural design, history of architecture, and history of art. He traveled during his vacations in Germany, Switzerland, Italy, Greece, France, and England, primarily to study architecture.

After his return to the United States he had several articles published in Heating and Ventilating Magazine in which he explained the methods of designing hot water heating systems. This appeared to be the first authentic information published in the United States on this subject.

He left A & M in 1912 and went to the University of Texas where he became Professor of Architecture. From 1912 to 1920 he was Professor of Architecture and Head of the
Division of Engineering Bureau of Economic Geology and Technology. During these years he devoted most of his time to research. He ran experiments on rodding concrete and published two papers on the subject. Up to that time concrete was thought to be crystalline in form and that rodding or jolting it after it was poured reduced its strength. The reverse was found to be true. This pioneered the way for the pre-mixed concrete of today.

Dr. Giesecke held a reserve commission as Major of Engineers and when World War I came on he applied for active duty. He took a physical examination but after an examination of his cardiograph the medical officer turned him down. He appealed to the San Antonio Board of Review but was rejected by them also. Two years later he was again turned down and thereupon he resigned his reserve commission.

In 1923 Professor Giesecke heard a talk in Austin, made by a representative of the National Research Council who said that they would be willing to cooperate with Engineering Experiment Stations directed by men who had Doctor's degrees. This made Professor Giesecke feel that he should either resign or get a Ph. D.

He asked for and received a years leave of absence to do graduate work and it was granted, this time without pay. In 1923 he went to the University of Illinois where he studied under Dr. A. C. Willard, Head of the Department of Mechanical Engineering, and later President of the University of Illinois. From this institution Professor Giesecke received a Ph. D. in 1925.

When Dr. Giesecke left the University of Texas in 1927, the Board of Regents gave him a letter of appreciation for his loyal and valuable services to the institution and each member of the Board signed it.

In 1927 he returned to Texas A & M as Head of the Department of Architecture and College Architect but in 1928 he was relieved of his duties as Head of the Department of Architecture and became College Architect and Director of the Texas Engineering Experiment Station, where he remained until he went on modified service in 1939.
During the period from 1895 to 1912 Dr. Giesecke designed or supervised the design of Foster Hall, Loggett, Milner, Mitchell, the Civil Engineering Building, the Electrical Engineering Building, the Y. M. C. A. and the Academic Building. Between 1927 and 1935 he was responsible for the design of Cushing Library, Hart Hall, Walton Hall, the Chemistry building, the Petroleum Engineering Building, the Animal Industries Building and the System Administration Building as well as several of the large buildings at some of the branch Colleges of the System.

He was a staunch believer in hot water heating systems and installed such a system on the A & M Campus. To insure satisfactory circulation of the hot water in the buildings he installed fractional horsepower circulating pumps and the system has been eminently satisfactory.

Dr. Giesecke was a man of wide interests and capabilities and for this reason was active in many professional organizations. He was a charter member (1891) of the Society for the Promotion of Engineering Education, later changed to The American Society of Engineering Education, and later President of the Texas Section, life member of The American Society of Heating and Ventilating Engineers and your Past National President in 1940, member of American Society of Mechanical Engineers, fellow of the American Society for the Advancement of Science and in 1906 Professor Giesecke was elected a member of the American Institute of Architects. Shortly thereafter he joined Messrs. Overbeck, Sanguinette, Steets, Loren, Ayers, and Trost to form the Texas Chapter A. I. A., which he served as Secretary.

In about 1928 the Legislature appointed a committee on prison construction and prison reform. The committee appointed Dr. Giesecke to serve with it and he toured the States with the committee to study prisons. In New York a Danish Government official made the statement that New York prisons were good but Danish prisons were better. Dr. Giesecke immediately became interested in studying prisons in Europe, asked for and received a two months leave from the College to go and study them. He visited prisons in Denmark, Germany, Czechoslovakia, Austria, France, Switzerland, and England.
His path was cleared for him by a letter from Governor Dan Moody introducing him to the Governments of these countries. A series of articles describing the results of his visit were published by the Dallas News.

In 1942 the University of Illinois offered Dr. Giesecke an appointment as special Research Professor of Mechanical Engineering in the Engineering Experiment Station. The assignment was for six months study. Again a leave of absence was granted and Dr. Giesecke accepted the offer. The results of the study were published in a University of Illinois bulletin.

He received the F. Paul Anderson Gold Medal for outstanding contribution to the science of Heating and Ventilating in 1942. I believe that this honor was as highly prized by Dr. Giesecke as any he ever received.

On June 7, 1943 at the age of 74 Dr. Giesecke received his fifth degree, that of Civil Engineer, from the University of Illinois.

Dr. Giesecke was an honorary member of Tau Beta Pi and of Sigma Xi.

It is only natural that a man of Dr. Giesecke's broad knowledge, experience, and research ability, would be a prolific writer. His publications are too numerous to list here but I will show the extent of his activity.

Between 1911 and 1925 he was the author of some 20 or more magazine articles and research bulletins. Between 1926 and 1939, when he went on modified service, he authored or co-authored some 75 articles and bulletins in addition to writing and re-writing chapters in the A.S.H.V.E Guide some three or four times. After 1940 he published about 10 articles.

In addition to the scores of articles and research bulletins Dr. Giesecke co-authored a number of textbooks. At the beginning of his career in Engineering Drawing very few books on the subject were available. To meet the needs he produced a small book Mechanical Drawing Part I. This was later expanded in collaboration with Professor A. Mitchell into Parts 2 and 3. In 1923 Dr. Giesecke and Professor Mitchell expanded
and revised the material in Parts 2 and 3, of mechanical drawing and published them in one volume. In 1933 Professor R. C. Spencer, who succeeded Professor Mitchell as Head of the Drawing Department, joined Professor Mitchell and Dr. Giesecke and they revised and enlarged Mechanical Drawing and published it as Technical Drawing. The publication rights of Technical Drawing were transferred to the MacMillan Company of New York in 1934. The first edition released by them was in 1936, the second in 1940 and the third in 1949. Technical Drawing is now being used as a text in about 240 schools in the United States and 10 in Canada. So far 267,073 copies of Technical Drawing have been sold by the MacMillan Company which is an average of about 15,700 copies per year. This has been one of the outstanding drawing books produced in the United States.

After returning from Germany about 1908 Dr. Giesecke published a book "The Design of Gravity-Circulating Hot Water Heating Systems". This is one of the few books available on the subject. In 1947 Dr. Giesecke brought out another book entitled "Hot Water Heating and Radiant Heating and Radiant Cooling". Although many articles have been written on this field very few books are available on it.

On March 3, 4, and 5, 1951, Dr. and Mrs. Giesecke returned to the Memorial Student Center on the A & M Campus for their 60th wedding anniversary since this building was on the spot where Dr. Giesecke's original home was built. He invited a number of his old friends in to participate with them in this celebration.

In 1945 Dr. Giesecke retired after 59 years service to the State of Texas, as a teacher and research worker, 44 of these at A & M and 15 at the University. After his retirement he continued his research with the limited means available, and in addition did some writing, and was active in consulting engineering.

About 1947 several of us went to New Braunfels to consult with Dr. Giesecke and while we were there he wanted to show us a ceramic cooling tower which he had designed for the McGough Hosiery Mill. When we arrived at the mill we found a long outside
stairsway leading to the roof some 18 feet above ground level. I turned to Dr. Giesecke and told him there was no reason for him to go up with us. He turned to me with a twinkle in his eye and said, "It's things like this that keep me young" and up the stairs he went.

The desire to learn by study, experimentation, and observation, was a lifelong characteristic. His daily notebook contained data which was taken on an experiment which he was conducting on his camp home and recorded just two hours before he was stricken.

During his entire life time Dr. Giesecke had two interests, his family and his work. Professor A. Mitchell has said that he was never too busy to answer a call from home. For him, the only son was a prominent architect in Austin until his death a few years ago, Mrs. Giesecke and a daughter Mrs. Alma Hodges live in the old family residence in New Braunfels, another daughter, Mrs. Linda Geren lives in Ft. Worth and the youngest daughter, Mrs Minnie Hight lives in California.

On June 27, 1953, after a busy day, a heart attack closed the career of this illustrious engineer, scholar, and gentleman.

To me it seems entirely fitting and appropriate that I should close this talk about the man whose name we perpetuate tonight in inaugurating the F. E. Giesecke Educational Fund, by quoting a well known Poem.

\[Crossing the Bar \]

Sunset and evening star,
And one clear call for me
And may there be no meaning of the bar,
When I put out to sea.

But such a tide as moving seems asleep,
Too full for sound and foam,
When that which drew from out the boundless deep
Turns again home.

\[Crossing the Bar \]
Twilight and evening bell,
And after that the dark
And may there be no sadness of farewell,
When I embark,

For though from out our bourne of time and place
The flood may bear me far,
I hope to see my Pilot face to face
When I have crossed the bar.

Alfred Lord Tennyson
Born near Brenham, Washington County, January 26, 1869. Prepared for college in public schools of that county.

Entered Texas A. and M. College in 1883. Graduated in 1886. Received B.B. degree from College in 1890.

Had summer courses in the following: Engineering and Drawing, Round Lake, New York, summer 1889; Experimental Engineering, Cornell University, summer 1893; Architectural Drawing, Cornell University, summer 1894; Architectural Design at Massachusetts Institute of Technology, summer 1898. Received graduate degree from M.I.T in 1904; Ph.D., University of Illinois, 1921.

Assistant Professor of Drawing, Texas A. and M. College 1886 - 1888. Made head of Drawing Department in 1888, at age of nineteen. Head of Architecture and Drawing from 1901 - 1912. College Architect and Director of Engineering Station for a number of years.

Member of American Society of Heating Engineers since 1913. Later its president. Received from this society in 1940 the F. Paul Anderson medal, the fourth such medal awarded in the United States.

Author of several texts and many technical papers. Popular and extensively used text book entitled Technical Drawing written in collaboration with Professor A. Mitchell and H. C. Spencer.

First head of Drawing, first head of Architecture, first director of Engineering Experiment Station.

Professor of Architecture, University of Texas 1912 - 1927.
College Architect and Director of Engineering Experiment Station,
Texas A. and M. College 1927 - 1941.

Member: Honorary, Tau Beta Pi
 Sigma Xi
<table>
<thead>
<tr>
<th>Positions held at A & M College</th>
<th>Positions at University of Texas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1886-87 -- Asst. Prof. of Mechanics</td>
<td>1927-28 -- Prof. of Architecture</td>
</tr>
<tr>
<td>87-88 -- Asst. Prof. of Mechanics</td>
<td>1928-29 -- Prof. of Architecture and Director of Engineering Experiment Station</td>
</tr>
<tr>
<td>88-89 -- Instructor in drawing</td>
<td>1929-30 -- Director of Engineering Experiment Station and Prof. of Engineering Research</td>
</tr>
<tr>
<td>89-90 -- Associate Prof. of drawing</td>
<td>1930-31 -- Director of Engineering Experiment Station and College Architect</td>
</tr>
<tr>
<td>90-91 -- Associate Prof. of drawing</td>
<td>1931-32 -- Director of Engineering Experiment Station and College Architect</td>
</tr>
<tr>
<td>91-92 -- Associate Prof. of drawing</td>
<td>1932-33 -- Director of Engineering Experiment Station and College Architect</td>
</tr>
<tr>
<td>92-93 -- Professor of drawing</td>
<td>1933-34 -- Director of Engineering Experiment Station and College Architect</td>
</tr>
<tr>
<td>93-94 -- Professor of drawing</td>
<td>1934-35 -- Director of Engineering Experiment Station and College Architect</td>
</tr>
<tr>
<td>94-95 -- Professor of drawing</td>
<td>1935-36 -- Director of Engineering Experiment Station and College Architect</td>
</tr>
<tr>
<td>95-96 -- Professor of drawing</td>
<td>1936-37 -- Director of Engineering Experiment Station and College Architect</td>
</tr>
<tr>
<td>96-97 -- Professor of drawing</td>
<td>1937-38 -- Director of Engineering Experiment Station and College Architect</td>
</tr>
<tr>
<td>97-98 -- Professor of drawing</td>
<td>1938-39 -- The Same</td>
</tr>
<tr>
<td>98-99 -- Professor of drawing</td>
<td>1939-40 -- Prof. Emeritus of Heating, Ventilating and Air Conditioning</td>
</tr>
<tr>
<td>99-00 -- Professor of drawing</td>
<td>1940-41 -- The Same</td>
</tr>
<tr>
<td>1900-01 -- Professor of drawing</td>
<td>1941-42 -- The Same</td>
</tr>
<tr>
<td>01-02 -- Professor of drawing</td>
<td>1942-43 -- The Same</td>
</tr>
<tr>
<td>02-03 -- Professor of drawing</td>
<td>1943-44 -- The Same</td>
</tr>
<tr>
<td>03-04 -- Professor of drawing</td>
<td>1944-45 -- The Same</td>
</tr>
<tr>
<td>04-05 -- Professor of drawing</td>
<td>1945-46 -- The Same</td>
</tr>
<tr>
<td>05-06 -- Professor of drawing</td>
<td>* Division of Engineering; Bureau of Economic Geology and Technology.</td>
</tr>
<tr>
<td>06-07 -- Prof. of Agricultural Engineering and Drawing</td>
<td>**Division of Engineering; Bureau of Economic Geology and Technology.</td>
</tr>
<tr>
<td>07-08 -- Prof. of Agricultural Engineering and Drawing</td>
<td>*** Engineer in the Engineering Experiment Station.</td>
</tr>
<tr>
<td>08-09 -- Prof. of Agricultural Engineering and Drawing</td>
<td>**** of the Engineering Experiment Station.</td>
</tr>
<tr>
<td>09-10 -- Prof. of Agricultural Engineering and Drawing</td>
<td></td>
</tr>
<tr>
<td>10-11 -- Prof. of Agricultural Engineering and Drawing</td>
<td></td>
</tr>
<tr>
<td>11-12 -- Prof. of Agricultural Engineering and Drawing</td>
<td></td>
</tr>
<tr>
<td>1912-13 -- Prof. of Agricultural Architectural Engineering and Drawing</td>
<td></td>
</tr>
</tbody>
</table>

Positions Held At Texas A&M and University of Texas by F.E. Giesecke
Texas A & M Buildings designed by F. E. Giesecke

Power Plant 1893
Infirmary 1895
Foster Hall 1899
New Nataorium 1908
Civil Engineering Building (Nagle Hall) 1909
Experiment Statuion 1909
Legget and Milner Halls 1911
Mitchell Hall 1912
Electrical Engineering Building (Bolton hall) 1912
Bernard Shisu Hall 1913
Academic Building 1914
Chemistry Building 1929
Cushing Memoriaql Library 1930
Hart Hall 1930
Walton Hall 1931
Administration Building (System Building) 1932
Geology-Petroleum Engineering Building 1932
Agricuktural Engineering Building 1932
P. L. Downs Natatorium 1932
Animal Industries Building 1932
Veterinary Hospital (Franks hall) 1937
Horse Barn 1937
Chancellors House 1939
F. F. Giesecke House 1939
A blueprint for Preston Geren Jr.’s life was mapped out before he was even born. Following in the footsteps of his father and grandfather, the 1945 graduate of Texas A&M University was destined to take his rightful place among the “First Family” of Texas A&M architecture.

Geren’s ties to the Texas A&M architecture program can be traced back to its beginning. His grandfather, Frederick E. Giesecke, established the state’s first formal architectural education program at Texas A&M more than 100 years ago. Giesecke also oversaw the design and construction of many of Texas A&M’s most revered buildings.

A member of the Class of 1886, Giesecke earned his bachelor’s degree in mechanical engineering at only 17 years old. After studying architectural drawing at Cornell University and architectural design at the Massachusetts Institute of Technology, he was appointed head of A&M’s Department of Mechanical Drawing. In 1904, Giesecke established Texas A&M’s first architectural program and served as head of the program until 1912 before accepting a position at The University of Texas at Austin. There, he engaged in research as head of the Division of Engineering’s Bureau of Economic Geology and Technology.

In 1924, Giesecke earned his fourth degree, a Ph.D. from the University of Illinois. He returned to Texas A&M three years later as the college’s official architect and served his second stint as head of its architecture program. During the Great Depression, Giesecke designed and oversaw construction of ten Texas A&M buildings: the Halbouty Building, the Chemistry Building, the Jack. K Williams Administration Building, the Animal Industries Building, the Veterinary Hospital (now the Civil Engineering Building), the horse barn (now the Texas Agricultural Experiment Station Annex Building), Cushing Memorial Library and Archives, and Scoates, Hart and Walton halls.

ANIMAL INDUSTRIES BUILDING

Designed as a memorial to the pioneer livestock men of Texas, the Animal Industries Building reflects the love of color and decoration. The exterior of the building is ornamented with stone casts of cattle skulls, horse heads and cornucopias, while the main entryway is adorned with cast-iron cattle brands that represent many of Texas’ largest Depression-era ranches. The Texas theme carries inside, where ram, cow and horse heads adorn the tops of columns that rise from the building’s unique marble laid floor—distinct from the tile used in most buildings of the period.
CHEMISTRY BUILDING
Built as a shining jewel of fundamental scientific education and research, the Chemistry Building’s design reflects classical proportions and details. Ornamentation throughout employs a variety of color schemes in tile inspired by Mexican-American art, including patterns of animal heads, skulls, bones and fossils. A monumental staircase leading to a pedimented doorway highlights the main entrance, while the foyer’s ceiling features intricate painted gold grillwork against a backdrop of dark Russian marble panels and complementary lighting fixtures. An additional staircase leads to the building’s historical heart and soul, a lecture hall named after distinguished chemistry professor Arthur E. Martell.

CIVIL ENGINEERING BUILDING
Built in classical proportions, the building’s fluted pilasters are crowned with deep capitals which extend two stories. Perched above the single-story entrance is an elaborately-designed cartouche in scale with the rest of the building. A shield at the main entrance bears a veterinary symbol topped by animal heads and a five-point star, while other cast stone figures line the exterior. The building’s interior walls are made of glazed tile. In 1991, the facility underwent a $38 million renovation to accommodate the university’s rapid growth.
CUSHING LIBRARY

The exterior of the neoclassical-style building is adorned with the names of time-honored scholars such as James Watt, Francis Bacon, Louis Pasteur, William Shakespeare, Isaac Newton and Plato. The chief designer who worked with Giesecke, Samuel Charles Phelps Vosper’s characteristic cast stone animal heads and tile work can also be seen around the exterior. Inside, the neoclassical design prevails in colorfully-stenciled ceilings, hand-carved bookcases and doorways bordered with an egg-and-dart crown molding, while iron grillwork outside of the Kelsey Reading Room features early Texas cattle brands.

HALBOUTY GEOSCIENCES BUILDING

Originally known as the petroleum engineering building, Halbouty is designed in an eclectic and highly-ornamented style. The original four-story building was in the shape of a T and included a high central tower over the main entrance that concealed a large water tank. The building features castings of seashells, pebble mosaics and recessed doors with iron grillwork on its south entrance. A heroic panel over the side entrance symbolizes petroleum exploration, while Mexican tile adorns the building’s front exterior. The building underwent massive renovations in 1972 when the original tower was removed for safety reasons and a much-needed 60,000-square-foot addition was completed.
HART HALL
Characterized by extravagant detail and an organized structure, Hart Hall’s design served as the inspiration for Walton Hall and other Depression-era campus dormitories. Hart and Walton Halls were the first dorms on the Texas A&M campus to use a ramp-style construction, meaning that rooms are accessible from outside stairwells instead of hallways. The four-story dormitories feature double and single suite-style rooms. Vosper’s influence is obvious in the ramp entrances, which are decorated with miniature horse heads and cattle skulls and elaborate masonry.

SCOATES HALL
Originally known as the agricultural engineering building, Scoates Hall was designed in a classical revival style. A Latin inscription over the main entrance reads potentia (power), aqua (water), machinae (machinery) and edificia (buildings). These represent the early subject matter areas of agricultural engineering. The main auditorium houses the building’s crown jewels: extravagant agricultural murals and a one-of-a-kind chandelier made from plow parts. Over the years, many of the building’s original features were hidden—including the main auditorium’s colorfully-stenciled ceiling tiles. From 2013 to 2015, Scoates Hall underwent a $10.6 million renovation projected that restored the building to its former splendor.
TEXAS AGRICULTURAL EXPERIMENT STATION ANNEX
Consisting of a stallion barn and a main barn, the Horse Barn provided stalls and equipment for up to 50 horses. In addition to the two main stables, there were six large exercise pens, a small pasture for the horses to roam and a large office for faculty. The main entrance is decorated with a shield that displays grains flanked by profiles of horse heads. Of particular significance are images on the copper cupolas: one depicts a cowboy roping a rabbit in a cactus patch, while the other shows a cowboy trying to control a horse bucking in reaction to a snake. Freshmen in the Corps of Cadets are still required to recite the location and meaning of these images to their cadet superiors.

WALTON HALL
Walton Hall (along with Hart Hall) were the first dorms on the Texas A&M campus to use a ramp-style construction, meaning that rooms are accessible from outside stairwells instead of hallways. The four-story dormitories feature double and single suite-style rooms. Nicknamed “Walton Hotel” in its early days, this dormitory was at one time the most luxurious on campus due to the quality and size of its rooms, in addition to being the first dorm with spring mattresses.
ADMINISTRATION BUILDING

Designed in a classic Beaux Arts style, the building is made of light grey stone rather than brick. Its long front portico contains: a tiled floor, ornate ceiling and huge urns set between 14 enormous ionic columns. Each column features the face of a warrior and a woman on opposing sides. 128 ram heads line the building's perimeter, while 124 lion heads line the copper roof's edge. Inside, the iconography of Texas and the Southwest is expressed in ornamental metals, stained glass, plaster, decorative paintings and a large terrazzo Texas map on the foyer floor. Colors of the map portray Texas geography, while brass markings represent Spanish missions, rivers and cattle trails. Also marked are the locations of Washington-on-the-Brazos, the capital of Texas and Texas A&M.

In addition to his architectural contributions, he was the first head of the Texas Engineering Experiment Station and led the formation of the first Alumni Association, the forerunner of The Association of Former Students. In 2004, Giesecke was posthumously honored as an Outstanding Alumnus of the College of Architecture. He was, without question, the first Aggie architect.
Born near Brenham, Washington County, January 26, 1869. Prepared for college in public schools of that county.

Entered Texas A. and M. College in 1883. Graduated in 1886. Received M E degree from Cornell in 1890.

Had summer courses in the following: Engineering and Drawing, Round Lake, New York, summer 1889; Experimental Engineering, Cornell University, summer 1893; Architectural Drawing, Cornell University, summer 1894; Architectural Design at Massachusetts Institute of Technology, summer 1896. Received graduate degree from M I T in 1904; Ph D, University of Illinois, 1923.

Assistant Professor of Drawing, Texas A. and M. College 1886 - 1888. Made head of Drawing Department in 1888, at age of nineteen. Head of Architecture and Drawing from 1904 - 1912. College Architect and Director of Engineering Station for a number of years.

Charter member of S P E E (now American Society of Engineering Education) 1891.

Member of American Society of Heating Engineers since 1913. Later its president. Received from this society in 1940 the F. Paul Anderson medal, the fourth such medal awarded in the United States.

Author of several texts and many technical papers. Popular and extensively used text book entitled Technical Drawing written in collaboration with Professor A. Mitchell and H. C. Spencer.

First head of Drawing, first head of Architecture, first director of Engineering Experiment Station.

Camp Giesecke Sold To Three Local Men

Camp Giesecke, founded nearly 60 years ago by a prominent Texas engineer and educator, was sold last week to the Balcones Development Corp.

Dr. F. E. Giesecke, a professor at Texas A&M College for most of his 59-year teaching career, bought the site as a 59-acre farm in 1810.

The property, partly bounded by the Comal and Guadalupe Rivers, then included what is now Camp Warnecke and all the lots along Lincoln St. It now is a four-and-one-half-acre resort which was sold by his daughters, Mrs. M. P. Hodges, who has managed Camp Giesecke since 1946, Mrs. Preston M. Geren of Ft. Worth, and Mrs. Ed Wight of Berkeley, Calif.

Balcones Development Corp. includes Dr. Stanley Woodward who is president; Jack Krueger, secretary-treasurer; and William Hovestadt Jr., vice-president.

New owners plan to operate the resort as Camp Giesecke throughout the coming season and would like to develop it into a resort motel. The property has 1,400 feet of river front.

Dr. Giesecke bought the farm as a summer retreat for his family so they could be near their grandparents, Mr. and Mrs. Ernst Gruene Jr. and Capt. and Mrs. Julius Giesecke.

SUMMER SCHOOLS

Prof. Giesecke was teaching at Texas A&M College when he bought the property here, and he had three months of summer vacation which the family spent in New Braunfels.

He conducted a summer school for A&M boys, and Coach Charlie Moran brought the football team down for summer training. After 1912, the Giesecke's summer home became a resort, growing as cottages were added gradually.

Through the years, the camp was the scene of many summer seminars, a meeting place for the intellectuals of Texas and beyond. As recently as 1963, eight editors of Holt, Reinhart & Winston Publishing Co. of New York came down to Camp Giesecke to work on a series of French, Spanish, and German textbooks.

DR. GIESECKE

Frederick Giesecke was born in Latiurn, near Washington-on-the-Brazos, Jan. 28, 1869, the son of Capt. Julius and Wilhelmine Groos Giesecke. The captain moved his family to New Braunfels in 1873. He was technical manager of the New Braunfels Woollen Manufacturing Co.

Frederick graduated from the local school in 1882 and attended a German-English school in San Antonio before entering Texas A&M, where he received his degree in mechanical engineering in 1890. He was at the head of his class throughout college, held the highest military rank, and won both the physics and mathematics medals. He began teaching at the college during his senior year.

When only 19, he headed the department of drawing. He designed several buildings on the A&M campus, and after his marriage to Hulda Gruene in 1891, designed his own home on campus.

Giesecke traveled abroad during 1906 and 1907, studying heating and ventilating in Berlin. He later specialized in the subject, and his designs were published in practically every textbook on heating and ventilating.

He accepted the post as head of the University of Texas Architectural Dept. in 1912 so that his three daughters could be educated there and his older son do graduate work.

Back at A&M in 1927, he became director of the Engineering Experimental Station, professor of architecture, and college architect.

Giesecke received his PhD degree from the University of Illinois in 1924. He helped to organize the Texas Chapter, American Institute of Architects; was a charter member of the American Society for Engineering Education; and was president of the American Society of Heating and Ventilating Engineers.

He resigned after 59 years of teaching and died at his home in New Braunfels in 1935 at the age of 84.

Mrs. Hodges, whose residence has been at Camp Giesecke, will move across the river to the German half-timer home on East Coll which her grandfather, Capt. Julius Giesecke, built in 1873.
GENERAL INFORMATION FOR GUESTS
April 1953

The camp is in the City of New Braunfels, entirely independent of any other camp, open, approximately, from April 1 to November 1, and operated under the direction of a competent hostess, with a view to providing an attractive place for a restful and healthful summer outing, especially for families.

There are four and one-fourth acres of land with 1400 feet of river front in the horseshoe bend of the Comal River, as shown on the map, and within one-quarter mile of the Guadalupe River. The two rivers provide good places for swimming, boating, and fishing.

A special Baby Pool is available for small children.

The camp is provided with a number of cottages arranged as indicated on the map. Every cottage is screened and supplied with electric light, hot and cold city water, and gas for cooking, and has private bath and necessary sanitary facilities.

The camp rates for guests, per person per day, are shown below; but for guests who come only for week ends, or for July 4th or Labor Day, there is an additional charge of 50 cents per person per day.

The general arrangements and the rates for the several cottages are as follows:

Nos. 3, 4, and 5. Three one-room cottages, each 10x28 feet; the rate per day is $4.50 for one, two, or three persons; it increases at the rate of $1.25 per day for every additional person above three.

Nos. 6, 7, and 8. Three one-room cottages, each 12x30 feet; the rate per day is $5.75 for one, two, three, or four persons; it increases at the rate of $1.25 per day for every additional person above four.

No. 9. A one-room cottage, 14x24 feet; the rate per day is $5.75 for one, two, three, or four persons; it increases at the rate of $1.25 per day for every additional person above four.

No. 10. A one-room cottage 14x24 feet with a combination kitchen and dining room. The rate is $8.00 per day for one, two, three, or four persons; it increases at the rate of $1.50 per day for every additional person above four.

No. 11. A three-room cottage with screened porch, 12x28 feet, and screened kitchen and dining room. The rate is $12.50 per day for one, two, three, four, five, or six persons; it increases at the rate of $1.50 per day for every additional person above six. This cottage is equipped with an attic fan, a porch ceiling fan, an 8½-foot Servel unit, and dishes.

No. 1. A two-room cottage with one open and one screened porch; the rate is $7.75 per day for one, two, three, four, five, or six persons; it increases at the rate of $1.25 per day for every additional person above six.

No. 2. A one-room cottage with two screened porches. The rate is $7.50 per day for one, two, three, or four persons; it increases at the rate of $1.50 per day for every additional person above four. This cottage has an electric refrigerator.

No. 14. A three-room cottage with a 10x19 foot screened porch. The rate is $8.50 per day for one, two, three, or four persons; it increases at the rate of $1.50 per day for every additional person above four. This cottage has an electric refrigerator and is furnished with dishes and linens.

No. 18. A garage apartment, 20x26 feet. The rate is $10.00 per day for one, two, three, or four persons; it increases at the rate of $2.00 per day for every additional person above four. The apartment has a gas range and gas refrigerator, and is furnished with dishes and linens.

Except when otherwise arranged, cottages must be vacated by 1 p.m.; checking-in time is 3 p.m.

All rents are payable in advance.

A deposit of $1.00 is required for a cottage key.

Ice, milk, and groceries are delivered at the cottages. There are good restaurants within walking distance of the camp. Service cars can be easily secured.

Since the management aims to provide a place for a restful and healthful outing, quiet must be maintained from 11 p.m. to 7 a.m. No person afflicted with any disease should apply for admission.

Guests should bring sheets and pillow cases, covers, towels, bathing suits, dishes and cooking utensils; however, linens may be rented from the camp.

So far as possible, reservations will be made if the request is accompanied by a payment at least equal to the rate for two days; if the reservation should be cancelled, the management will endeavor to send the cottage to others and, if successful, will refund the deposit or that part of the deposit which is saved by rerenting.

Among other attractions in New Braunfels are a fine municipal golf course, with six natural water hazards, in Landa Park; a large municipal swimming pool in Landa Park near the golf course, and beautiful scenic drives along the Guadalupe River and into the mountainous territory adjacent to New Braunfels.

For general information, write or telephone Camp Giesecke, P. O. Box 417, New Braunfels, Texas.

The Camp may be reached as follows:
Starting from Main Plaza in New Braunfels, go southeast along Seguin Ave. two blocks; turn to left at Humble filling station and go northeast two blocks to bridge shown on above map; cross the bridge and turn to the right.
Dr. Frederick Giesecke
Among Brilliant A&M Men

By JACK HARTSFIELD
Battalion Staff Writer

June 27, 1953 brought to a close one of the most brilliant and colorful careers in the annals of A&M men: that of Dr. Frederick Ernst Giesecke, Class of '86. On that day Dr. Giesecke died at his home in New Braunfels following a heart attack.

Born Jan. 28, 1899 at Latium (near Brenham), he entered A&M in 1883 with every intention of becoming the top man in his class. His grades proved that his intentions were followed up by hard work.

In the biographical material, Giesecke had been contributing to the A&M Archives prior to his death, he stated "Every evening I studied all my lessons for the following day. Every morning I reviewed my lessons before going to class; every weekend I reviewed the week's work, and before every examination I reviewed the entire book on which the examination was to be based."

At the conclusion of his senior year, he was made an instructor in the Department of Mechanical Engineering and Drawing at A&M. Ingenuity was a character trait he never permitted to gather rust. He and several of his classmates designed and built a steam engine, which was displayed at the State Fair of Texas in 1886.

When in 1888, Drawing was separated from Mechanical Engineering, it was young Giesecke who was placed in charge of the new department. He was not yet 19 years old at the time. In 1890 he received his mechanical engineer degree from the college. He followed the conferring of this degree with advance study at other institutions, receiving the B.S. in Architecture from Massachusetts Institute of Technology in the same decade, and the B.S. in civil engineering and Ph.D. from the University of Illinois at a later date.

From 1912 until 1927, he served as professor of architecture and architectural engineering, as well as director of the Engineering Experimental Station at the University of Texas. Upon his return to A&M, he was made professor of architecture and director of the engineering experimental station in College Station. In 1930 he became professor emeritus of heating, ventilation and air conditioning.

As college architect and prior to that appointment, he designed or supervised the design of such A&M landmarks as the Academic Building, Cushing Library, the Petroleum Engineering Building, the System Administration Building and a variety of others.

To scientific journals during his life, he contributed 80 odd valuable articles. His most successful text, written in collaboration with professors A. Mitchell and H. C. Spenser, has gone through several editions and is now used in 240 colleges and universities in the U. S. and 10 in Canada.
NOTIFICATION TO PUBLISH

of

CUSHING MEMORIAL LIBRARY AND ARCHIVES

COPYRIGHT WARNING

The copyright law of the United States (Title 17, US Code) governs the making of photocopies or other reproductions of copyrighted materials. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use,” that user may be liable for copyright infringement.

NOTIFICATION TO PUBLISH:

Acknowledgment must be given to Cushing Memorial Library for the use of all of the Library’s material. All Cushing Memorial Library material(s) used must be credited or cited as follows: “Cushing Memorial Library and Archives, Texas A&M University.” Publication of any Cushing Memorial Library material(s) can take place only under the provisions of the fair-use doctrine of the U.S. Copyright Law or by obtaining permission from the copyright holder, which in many cases may not be the Cushing Memorial Library and/or Texas A&M University. The patron will defend and hold harmless the Cushing Memorial Library and the Texas A&M University System, its Board of Regents, its officers, employees and agents against all claims, demands, costs and expenses including, but not limited to, attorney’s fees incurred by copyright infringement, or any other legal and regulatory course of action arising from use of any material obtained from Cushing Memorial Library.

Posting reproductions of materials online in any fashion is a form of publication. For example posting an image of a manuscript, photo, etc. from our collections to a website, blog, or social media platform.

Agreement: By signing you have read and understand the Notification to Publish of Cushing Memorial Library and agree to abide by all statements therein.

Bruce L. Flaniken, P.E., Houston Chapter ASHRAE Historian
21018 Ripford Court, Richmond, Texas 77406-7065 Cell 832-530-1176
Email bflaniken@yahoo.com
Name (please print)

[Signature]

April 11, 2018
(Date)